Title: | Manipulating Labelled Data |
---|---|
Description: | Work with labelled data imported from 'SPSS' or 'Stata' with 'haven' or 'foreign'. This package provides useful functions to deal with "haven_labelled" and "haven_labelled_spss" classes introduced by 'haven' package. |
Authors: | Joseph Larmarange [aut, cre] , Daniel Ludecke [ctb], Hadley Wickham [ctb], Michal Bojanowski [ctb], François Briatte [ctb] |
Maintainer: | Joseph Larmarange <[email protected]> |
License: | GPL (>= 3) |
Version: | 2.14.0.9000 |
Built: | 2025-01-08 09:22:14 UTC |
Source: | https://github.com/larmarange/labelled |
This function copies variable and value labels (including missing values) from one vector to another or from one data frame to another data frame. For data frame, labels are copied according to variable names, and only if variables are the same type in both data frames.
copy_labels(from, to, .strict = TRUE) copy_labels_from(to, from, .strict = TRUE)
copy_labels(from, to, .strict = TRUE) copy_labels_from(to, from, .strict = TRUE)
from |
A vector or a data.frame (or tibble) to copy labels from. |
to |
A vector or data.frame (or tibble) to copy labels to. |
.strict |
When |
Some base R functions like base::subset()
drop variable and
value labels attached to a variable. copy_labels
could be used
to restore these attributes.
copy_labels_from
is intended to be used with dplyr syntax,
see examples.
library(dplyr) df <- tibble( id = 1:3, happy = factor(c("yes", "no", "yes")), gender = labelled(c(1, 1, 2), c(female = 1, male = 2)) ) %>% set_variable_labels( id = "Individual ID", happy = "Are you happy?", gender = "Gender of respondent" ) var_label(df) fdf <- df %>% filter(id < 3) var_label(fdf) # some variable labels have been lost fdf <- fdf %>% copy_labels_from(df) var_label(fdf) # Alternative syntax fdf <- subset(df, id < 3) fdf <- copy_labels(from = df, to = fdf)
library(dplyr) df <- tibble( id = 1:3, happy = factor(c("yes", "no", "yes")), gender = labelled(c(1, 1, 2), c(female = 1, male = 2)) ) %>% set_variable_labels( id = "Individual ID", happy = "Are you happy?", gender = "Gender of respondent" ) var_label(df) fdf <- df %>% filter(id < 3) var_label(fdf) # some variable labels have been lost fdf <- fdf %>% copy_labels_from(df) var_label(fdf) # Alternative syntax fdf <- subset(df, id < 3) fdf <- copy_labels(from = df, to = fdf)
Drop value labels associated to a value not present in the data.
drop_unused_value_labels(x)
drop_unused_value_labels(x)
x |
A vector or a data frame. |
x <- labelled(c(1, 2, 2, 1), c(yes = 1, no = 2, maybe = 3)) x drop_unused_value_labels(x)
x <- labelled(c(1, 2, 2, 1), c(yes = 1, no = 2, maybe = 3)) x drop_unused_value_labels(x)
Check if a factor is prefixed
is_prefixed(x)
is_prefixed(x)
x |
a factor |
look_for
emulates the lookfor
Stata command in R. It supports
searching into the variable names of regular R data frames as well as into
variable labels descriptions, factor levels and value labels.
The command is meant to help users finding variables in large datasets.
look_for( data, ..., labels = TRUE, values = TRUE, ignore.case = TRUE, details = c("basic", "none", "full") ) lookfor( data, ..., labels = TRUE, values = TRUE, ignore.case = TRUE, details = c("basic", "none", "full") ) generate_dictionary( data, ..., labels = TRUE, values = TRUE, ignore.case = TRUE, details = c("basic", "none", "full") ) ## S3 method for class 'look_for' print(x, ...) look_for_and_select( data, ..., labels = TRUE, values = TRUE, ignore.case = TRUE ) convert_list_columns_to_character(x) lookfor_to_long_format(x)
look_for( data, ..., labels = TRUE, values = TRUE, ignore.case = TRUE, details = c("basic", "none", "full") ) lookfor( data, ..., labels = TRUE, values = TRUE, ignore.case = TRUE, details = c("basic", "none", "full") ) generate_dictionary( data, ..., labels = TRUE, values = TRUE, ignore.case = TRUE, details = c("basic", "none", "full") ) ## S3 method for class 'look_for' print(x, ...) look_for_and_select( data, ..., labels = TRUE, values = TRUE, ignore.case = TRUE ) convert_list_columns_to_character(x) lookfor_to_long_format(x)
data |
a data frame or a survey object |
... |
optional list of keywords, a character string (or several
character strings), which can be formatted as a regular expression suitable
for a |
labels |
whether or not to search variable labels (descriptions);
|
values |
whether or not to search within values (factor levels or value
labels); |
ignore.case |
whether or not to make the keywords case sensitive;
|
details |
add details about each variable (full details could be time
consuming for big data frames, |
x |
a tibble returned by |
When no keyword is provided, it will produce a data dictionary of the overall data frame.
The function looks into the variable names for matches to the
keywords. If available, variable labels are included in the search scope.
Variable labels of data.frame imported with foreign or
memisc packages will also be taken into account (see to_labelled()
).
If no keyword is provided, it will return all variables of data
.
look_for()
, lookfor()
and generate_dictionary()
are equivalent.
By default, results will be summarized when printing. To deactivate default
printing, use dplyr::as_tibble()
.
lookfor_to_long_format()
could be used to transform results with one row
per factor level and per value label.
Use convert_list_columns_to_character()
to convert named list columns into
character vectors (see examples).
look_for_and_select()
is a shortcut for selecting some variables and
applying dplyr::select()
to return a data frame with only the selected
variables.
a tibble data frame featuring the variable position, name and description (if it exists) in the original data frame
François Briatte [email protected], Joseph Larmarange [email protected]
Inspired by the lookfor
command in Stata.
vignette("look_for")
look_for(iris) # Look for a single keyword. look_for(iris, "petal") look_for(iris, "s") iris %>% look_for_and_select("s") %>% head() # Look for with a regular expression look_for(iris, "petal|species") look_for(iris, "s$") # Look for with several keywords look_for(iris, "pet", "sp") look_for(iris, "pet", "sp", "width") look_for(iris, "Pet", "sp", "width", ignore.case = FALSE) # Look_for can search within factor levels or value labels look_for(iris, "vers") # Quicker search without variable details look_for(iris, details = "none") # To obtain more details about each variable look_for(iris, details = "full") # To deactivate default printing, convert to tibble look_for(iris, details = "full") %>% dplyr::as_tibble() # To convert named lists into character vectors look_for(iris) %>% convert_list_columns_to_character() # Long format with one row per factor and per value label look_for(iris) %>% lookfor_to_long_format() # Both functions can be combined look_for(iris) %>% lookfor_to_long_format() %>% convert_list_columns_to_character() # Labelled data d <- dplyr::tibble( region = labelled_spss( c(1, 2, 1, 9, 2, 3), c(north = 1, south = 2, center = 3, missing = 9), na_values = 9, label = "Region of the respondent" ), sex = labelled( c("f", "f", "m", "m", "m", "f"), c(female = "f", male = "m"), label = "Sex of the respondent" ) ) look_for(d) d %>% look_for() %>% lookfor_to_long_format() %>% convert_list_columns_to_character()
look_for(iris) # Look for a single keyword. look_for(iris, "petal") look_for(iris, "s") iris %>% look_for_and_select("s") %>% head() # Look for with a regular expression look_for(iris, "petal|species") look_for(iris, "s$") # Look for with several keywords look_for(iris, "pet", "sp") look_for(iris, "pet", "sp", "width") look_for(iris, "Pet", "sp", "width", ignore.case = FALSE) # Look_for can search within factor levels or value labels look_for(iris, "vers") # Quicker search without variable details look_for(iris, details = "none") # To obtain more details about each variable look_for(iris, details = "full") # To deactivate default printing, convert to tibble look_for(iris, details = "full") %>% dplyr::as_tibble() # To convert named lists into character vectors look_for(iris) %>% convert_list_columns_to_character() # Long format with one row per factor and per value label look_for(iris) %>% lookfor_to_long_format() # Both functions can be combined look_for(iris) %>% lookfor_to_long_format() %>% convert_list_columns_to_character() # Labelled data d <- dplyr::tibble( region = labelled_spss( c(1, 2, 1, 9, 2, 3), c(north = 1, south = 2, center = 3, missing = 9), na_values = 9, label = "Region of the respondent" ), sex = labelled( c("f", "f", "m", "m", "m", "f"), c(female = "f", male = "m"), label = "Sex of the respondent" ) ) look_for(d) d %>% look_for() %>% lookfor_to_long_format() %>% convert_list_columns_to_character()
Get / Set SPSS missing values
na_values(x) na_values(x) <- value na_range(x) na_range(x) <- value get_na_values(x) get_na_range(x) set_na_values(.data, ..., .values = NA, .strict = TRUE) set_na_range(.data, ..., .values = NA, .strict = TRUE) is_user_na(x) is_regular_na(x) user_na_to_na(x) user_na_to_regular_na(x) user_na_to_tagged_na(x)
na_values(x) na_values(x) <- value na_range(x) na_range(x) <- value get_na_values(x) get_na_range(x) set_na_values(.data, ..., .values = NA, .strict = TRUE) set_na_range(.data, ..., .values = NA, .strict = TRUE) is_user_na(x) is_regular_na(x) user_na_to_na(x) user_na_to_regular_na(x) user_na_to_tagged_na(x)
x |
A vector (or a data frame). |
value |
A vector of values that should also be considered as missing
(for |
.data |
a data frame or a vector |
... |
name-value pairs of missing values (see examples) |
.values |
missing values to be applied to the data.frame,
using the same syntax as |
.strict |
should an error be returned if some labels
doesn't correspond to a column of |
See haven::labelled_spss()
for a presentation of SPSS's user defined
missing values.
Note that base::is.na()
will return TRUE
for user defined missing values.
It will also return TRUE
for regular NA
values. If you want to test if a
specific value is a user NA but not a regular NA
, use is_user_na()
.
If you want to test if a value is a regular NA
but not a user NA, not a
tagged NA, use is_regular_na()
.
You can use user_na_to_na()
to convert user defined missing values to
regular NA
. Note that any value label attached to a user defined missing
value will be lost.
user_na_to_regular_na()
is a synonym of user_na_to_na()
.
The method user_na_to_tagged_na()
will convert user defined missing values
into haven::tagged_na()
, preserving value labels. Please note that
haven::tagged_na()
are defined only for double vectors. Therefore, integer
haven_labelled_spss
vectors will be converted into double haven_labelled
vectors; and user_na_to_tagged_na()
cannot be applied to a character
haven_labelled_spss
vector.
tagged_na_to_user_na()
is the opposite of user_na_to_tagged_na()
and
convert tagged NA
into user defined missing values.
na_values()
will return a vector of values that should also be
considered as missing.
na_range()
will return a numeric vector of length two giving the
(inclusive) extents of the range.
set_na_values()
and set_na_range()
will return an updated
copy of .data
.
get_na_values()
is identical to na_values()
and get_na_range()
to na_range()
.
set_na_values()
and set_na_range()
could be used with dplyr
syntax.
haven::labelled_spss()
, user_na_to_na()
v <- labelled( c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA), c(yes = 1, no = 3, "don't know" = 9) ) v na_values(v) <- 9 na_values(v) v is.na(v) # TRUE for the 6th and 10th values is_user_na(v) # TRUE only for the 6th value user_na_to_na(v) na_values(v) <- NULL v na_range(v) <- c(5, Inf) na_range(v) v user_na_to_na(v) user_na_to_tagged_na(v) # it is not recommended to mix user NAs and tagged NAs x <- c(NA, 9, tagged_na("a")) na_values(x) <- 9 x is.na(x) is_user_na(x) is_tagged_na(x) is_regular_na(x) if (require(dplyr)) { # setting value label and user NAs df <- tibble(s1 = c("M", "M", "F", "F"), s2 = c(1, 1, 2, 9)) %>% set_value_labels(s2 = c(yes = 1, no = 2)) %>% set_na_values(s2 = 9) na_values(df) # removing missing values df <- df %>% set_na_values(s2 = NULL) df$s2 # example with a vector v <- 1:10 v <- v %>% set_na_values(5, 6, 7) v v %>% set_na_range(8, 10) v %>% set_na_range(.values = c(9, 10)) v %>% set_na_values(NULL) }
v <- labelled( c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA), c(yes = 1, no = 3, "don't know" = 9) ) v na_values(v) <- 9 na_values(v) v is.na(v) # TRUE for the 6th and 10th values is_user_na(v) # TRUE only for the 6th value user_na_to_na(v) na_values(v) <- NULL v na_range(v) <- c(5, Inf) na_range(v) v user_na_to_na(v) user_na_to_tagged_na(v) # it is not recommended to mix user NAs and tagged NAs x <- c(NA, 9, tagged_na("a")) na_values(x) <- 9 x is.na(x) is_user_na(x) is_tagged_na(x) is_regular_na(x) if (require(dplyr)) { # setting value label and user NAs df <- tibble(s1 = c("M", "M", "F", "F"), s2 = c(1, 1, 2, 9)) %>% set_value_labels(s2 = c(yes = 1, no = 2)) %>% set_na_values(s2 = 9) na_values(df) # removing missing values df <- df %>% set_na_values(s2 = NULL) df$s2 # example with a vector v <- 1:10 v <- v %>% set_na_values(5, 6, 7) v v %>% set_na_range(8, 10) v %>% set_na_range(.values = c(9, 10)) v %>% set_na_values(NULL) }
Turn a named vector into a vector of names prefixed by values
names_prefixed_by_values(x)
names_prefixed_by_values(x)
x |
vector to be prefixed |
df <- dplyr::tibble( c1 = labelled(c("M", "M", "F"), c(Male = "M", Female = "F")), c2 = labelled(c(1, 1, 2), c(Yes = 1, No = 2)) ) val_labels(df$c1) val_labels(df$c1) %>% names_prefixed_by_values() val_labels(df) val_labels(df) %>% names_prefixed_by_values()
df <- dplyr::tibble( c1 = labelled(c("M", "M", "F"), c(Male = "M", Female = "F")), c2 = labelled(c(1, 1, 2), c(Yes = 1, No = 2)) ) val_labels(df$c1) val_labels(df$c1) %>% names_prefixed_by_values() val_labels(df) val_labels(df) %>% names_prefixed_by_values()
For labelled variables, values with no label will be recoded to NA
.
nolabel_to_na(x)
nolabel_to_na(x)
x |
Object to recode. |
v <- labelled(c(1, 2, 9, 1, 9), c(yes = 1, no = 2)) nolabel_to_na(v)
v <- labelled(c(1, 2, 9, 1, 9), c(yes = 1, no = 2)) nolabel_to_na(v)
Recode some values based on condition
recode_if(x, condition, true)
recode_if(x, condition, true)
x |
vector to be recoded |
condition |
logical vector of same length as |
true |
values to use for |
Returns x
with values replaced by true
when condition
is
TRUE
and unchanged when condition
is FALSE
or NA
. Variable and value
labels are preserved unchanged.
v <- labelled(c(1, 2, 2, 9), c(yes = 1, no = 2)) v %>% recode_if(v == 9, NA) if (require(dplyr)) { df <- tibble(s1 = c("M", "M", "F"), s2 = c(1, 2, 1)) %>% set_value_labels( s1 = c(Male = "M", Female = "F"), s2 = c(A = 1, B = 2) ) %>% set_variable_labels(s1 = "Gender", s2 = "Group") df <- df %>% mutate( s3 = s2 %>% recode_if(s1 == "F", 2), s4 = s2 %>% recode_if(s1 == "M", s2 + 10) ) df df %>% look_for() }
v <- labelled(c(1, 2, 2, 9), c(yes = 1, no = 2)) v %>% recode_if(v == 9, NA) if (require(dplyr)) { df <- tibble(s1 = c("M", "M", "F"), s2 = c(1, 2, 1)) %>% set_value_labels( s1 = c(Male = "M", Female = "F"), s2 = c(A = 1, B = 2) ) %>% set_variable_labels(s1 = "Gender", s2 = "Group") df <- df %>% mutate( s3 = s2 %>% recode_if(s1 == "F", 2), s4 = s2 %>% recode_if(s1 == "M", s2 + 10) ) df df %>% look_for() }
Extend dplyr::recode()
method from dplyr to
works with labelled vectors.
## S3 method for class 'haven_labelled' recode( .x, ..., .default = NULL, .missing = NULL, .keep_value_labels = TRUE, .combine_value_labels = FALSE, .sep = " / " )
## S3 method for class 'haven_labelled' recode( .x, ..., .default = NULL, .missing = NULL, .keep_value_labels = TRUE, .combine_value_labels = FALSE, .sep = " / " )
.x |
A vector to modify |
... |
< When named, the argument names should be the current values to be replaced, and the argument values should be the new (replacement) values. All replacements must be the same type, and must have either
length one or the same length as |
.default |
If supplied, all values not otherwise matched will
be given this value. If not supplied and if the replacements are
the same type as the original values in
|
.missing |
If supplied, any missing values in |
.keep_value_labels |
If |
.combine_value_labels |
If |
.sep |
Separator to be used when combining value labels. |
x <- labelled(1:3, c(yes = 1, no = 2)) x dplyr::recode(x, `3` = 2L) # do not keep value labels dplyr::recode(x, `3` = 2L, .keep_value_labels = FALSE) # be careful, changes are not of the same type (here integers), # NA arecreated dplyr::recode(x, `3` = 2) # except if you provide .default or new values for all old values dplyr::recode(x, `1` = 1, `2` = 1, `3` = 2) # if you change the type of the vector (here transformed into character) # value labels are lost dplyr::recode(x, `3` = "b", .default = "a") # use .keep_value_labels = FALSE to avoid a warning dplyr::recode(x, `3` = "b", .default = "a", .keep_value_labels = FALSE) # combine value labels x <- labelled( 1:4, c( "strongly agree" = 1, "agree" = 2, "disagree" = 3, "strongly disagree" = 4 ) ) dplyr::recode( x, `1` = 1L, `2` = 1L, `3` = 2L, `4` = 2L, .combine_value_labels = TRUE ) dplyr::recode( x, `2` = 1L, `4` = 3L, .combine_value_labels = TRUE ) dplyr::recode( x, `2` = 1L, `4` = 3L, .combine_value_labels = TRUE, .sep = " or " ) dplyr::recode( x, `2` = 1L, .default = 2L, .combine_value_labels = TRUE ) # example when combining some values without a label y <- labelled(1:4, c("strongly agree" = 1)) dplyr::recode(y, `2` = 1L, `4` = 3L, .combine_value_labels = TRUE)
x <- labelled(1:3, c(yes = 1, no = 2)) x dplyr::recode(x, `3` = 2L) # do not keep value labels dplyr::recode(x, `3` = 2L, .keep_value_labels = FALSE) # be careful, changes are not of the same type (here integers), # NA arecreated dplyr::recode(x, `3` = 2) # except if you provide .default or new values for all old values dplyr::recode(x, `1` = 1, `2` = 1, `3` = 2) # if you change the type of the vector (here transformed into character) # value labels are lost dplyr::recode(x, `3` = "b", .default = "a") # use .keep_value_labels = FALSE to avoid a warning dplyr::recode(x, `3` = "b", .default = "a", .keep_value_labels = FALSE) # combine value labels x <- labelled( 1:4, c( "strongly agree" = 1, "agree" = 2, "disagree" = 3, "strongly disagree" = 4 ) ) dplyr::recode( x, `1` = 1L, `2` = 1L, `3` = 2L, `4` = 2L, .combine_value_labels = TRUE ) dplyr::recode( x, `2` = 1L, `4` = 3L, .combine_value_labels = TRUE ) dplyr::recode( x, `2` = 1L, `4` = 3L, .combine_value_labels = TRUE, .sep = " or " ) dplyr::recode( x, `2` = 1L, .default = 2L, .combine_value_labels = TRUE ) # example when combining some values without a label y <- labelled(1:4, c("strongly agree" = 1)) dplyr::recode(y, `2` = 1L, `4` = 3L, .combine_value_labels = TRUE)
This function removes specified attributes. When applied to a data.frame, it will also remove recursively the specified attributes to each column of the data.frame.
remove_attributes(x, attributes)
remove_attributes(x, attributes)
x |
an object |
attributes |
a character vector indicating attributes to remove |
## Not run: library(haven) path <- system.file("examples", "iris.sav", package = "haven") d <- read_sav(path) str(d) d <- remove_attributes(d, "format.spss") str(d) ## End(Not run)
## Not run: library(haven) path <- system.file("examples", "iris.sav", package = "haven") d <- read_sav(path) str(d) d <- remove_attributes(d, "format.spss") str(d) ## End(Not run)
Use remove_var_label()
to remove variable label, remove_val_labels()
to remove value labels, remove_user_na()
to remove user defined missing
values (na_values and na_range) and remove_labels()
to remove all.
remove_labels( x, user_na_to_na = FALSE, keep_var_label = FALSE, user_na_to_tagged_na = FALSE ) remove_var_label(x) remove_val_labels(x) remove_user_na(x, user_na_to_na = FALSE, user_na_to_tagged_na = FALSE)
remove_labels( x, user_na_to_na = FALSE, keep_var_label = FALSE, user_na_to_tagged_na = FALSE ) remove_var_label(x) remove_val_labels(x) remove_user_na(x, user_na_to_na = FALSE, user_na_to_tagged_na = FALSE)
x |
A vector or a data frame. |
user_na_to_na |
Convert user defined missing values into |
keep_var_label |
Keep variable label? |
user_na_to_tagged_na |
Convert user defined missing values into
tagged |
Be careful with remove_user_na()
and remove_labels()
, user defined
missing values will not be automatically converted to NA
, except if you
specify user_na_to_na = TRUE
.
user_na_to_na(x)
is an equivalent of
remove_user_na(x, user_na_to_na = TRUE)
.
If you prefer to convert variables with value labels into factors, use
to_factor()
or use unlabelled()
.
x <- labelled_spss(1:10, c(Good = 1, Bad = 8), na_values = c(9, 10)) var_label(x) <- "A variable" x remove_labels(x) remove_labels(x, user_na_to_na = TRUE) remove_user_na(x, user_na_to_na = TRUE) remove_user_na(x, user_na_to_tagged_na = TRUE)
x <- labelled_spss(1:10, c(Good = 1, Bad = 8), na_values = c(9, 10)) var_label(x) <- "A variable" x remove_labels(x) remove_labels(x, user_na_to_na = TRUE) remove_user_na(x, user_na_to_na = TRUE) remove_user_na(x, user_na_to_tagged_na = TRUE)
Sort value labels according to values or to labels
sort_val_labels(x, according_to = c("values", "labels"), decreasing = FALSE)
sort_val_labels(x, according_to = c("values", "labels"), decreasing = FALSE)
x |
A labelled vector or a data.frame |
according_to |
According to values or to labels? |
decreasing |
In decreasing order? |
v <- labelled(c(1, 2, 3), c(maybe = 2, yes = 1, no = 3)) v sort_val_labels(v) sort_val_labels(v, decreasing = TRUE) sort_val_labels(v, "l") sort_val_labels(v, "l", TRUE)
v <- labelled(c(1, 2, 3), c(maybe = 2, yes = 1, no = 3)) v sort_val_labels(v) sort_val_labels(v, decreasing = TRUE) sort_val_labels(v, "l") sort_val_labels(v, "l", TRUE)
tagged_na_to_user_na()
is the opposite of user_na_to_tagged_na()
and
convert tagged NA
into user defined missing values (see labelled_spss()
).
tagged_na_to_user_na(x, user_na_start = NULL) tagged_na_to_regular_na(x)
tagged_na_to_user_na(x, user_na_start = NULL) tagged_na_to_regular_na(x)
x |
a vector or a data frame |
user_na_start |
minimum value of the new user na, if |
tagged_na_to_regular_na()
converts tagged NAs into regular NAs.
x <- c(1:5, tagged_na("a"), tagged_na("z"), NA) x print_tagged_na(x) tagged_na_to_user_na(x) tagged_na_to_user_na(x, user_na_start = 10) y <- c(1, 0, 1, tagged_na("r"), 0, tagged_na("d")) val_labels(y) <- c( no = 0, yes = 1, "don't know" = tagged_na("d"), refusal = tagged_na("r") ) y tagged_na_to_user_na(y, user_na_start = 8) tagged_na_to_regular_na(y) tagged_na_to_regular_na(y) %>% is_tagged_na()
x <- c(1:5, tagged_na("a"), tagged_na("z"), NA) x print_tagged_na(x) tagged_na_to_user_na(x) tagged_na_to_user_na(x, user_na_start = 10) y <- c(1, 0, 1, tagged_na("r"), 0, tagged_na("d")) val_labels(y) <- c( no = 0, yes = 1, "don't know" = tagged_na("d"), refusal = tagged_na("r") ) y tagged_na_to_user_na(y, user_na_start = 8) tagged_na_to_regular_na(y) tagged_na_to_regular_na(y) %>% is_tagged_na()
By default, to_character()
is a wrapper for base::as.character()
.
For labelled vector, to_character allows to specify if value, labels or
labels prefixed with values should be used for conversion.
to_character(x, ...) ## S3 method for class 'double' to_character(x, explicit_tagged_na = FALSE, ...) ## S3 method for class 'haven_labelled' to_character( x, levels = c("labels", "values", "prefixed"), nolabel_to_na = FALSE, user_na_to_na = FALSE, explicit_tagged_na = FALSE, ... ) ## S3 method for class 'data.frame' to_character( x, levels = c("labels", "values", "prefixed"), nolabel_to_na = FALSE, user_na_to_na = FALSE, explicit_tagged_na = FALSE, labelled_only = TRUE, ... )
to_character(x, ...) ## S3 method for class 'double' to_character(x, explicit_tagged_na = FALSE, ...) ## S3 method for class 'haven_labelled' to_character( x, levels = c("labels", "values", "prefixed"), nolabel_to_na = FALSE, user_na_to_na = FALSE, explicit_tagged_na = FALSE, ... ) ## S3 method for class 'data.frame' to_character( x, levels = c("labels", "values", "prefixed"), nolabel_to_na = FALSE, user_na_to_na = FALSE, explicit_tagged_na = FALSE, labelled_only = TRUE, ... )
x |
Object to coerce to a character vector. |
... |
Other arguments passed down to method. |
explicit_tagged_na |
should tagged NA be kept? |
levels |
What should be used for the factor levels: the labels, the values or labels prefixed with values? |
nolabel_to_na |
Should values with no label be converted to |
user_na_to_na |
user defined missing values into NA? |
labelled_only |
for a data.frame, convert only labelled variables to factors? |
If some values doesn't have a label, automatic labels will be created,
except if nolabel_to_na
is TRUE
.
When applied to a data.frame, only labelled vectors are converted by
default to character. Use labelled_only = FALSE
to convert all variables
to characters.
v <- labelled( c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA), c(yes = 1, no = 3, "don't know" = 9) ) to_character(v) to_character(v, nolabel_to_na = TRUE) to_character(v, "v") to_character(v, "p") df <- data.frame( a = labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2)), b = labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2, DK = 3)), c = labelled( c("a", "a", "b", "c"), labels = c(No = "a", Maybe = "b", Yes = "c") ), d = 1:4, e = factor(c("item1", "item2", "item1", "item2")), f = c("itemA", "itemA", "itemB", "itemB"), stringsAsFactors = FALSE ) if (require(dplyr)) { glimpse(df) glimpse(to_character(df)) glimpse(to_character(df, labelled_only = FALSE)) }
v <- labelled( c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA), c(yes = 1, no = 3, "don't know" = 9) ) to_character(v) to_character(v, nolabel_to_na = TRUE) to_character(v, "v") to_character(v, "p") df <- data.frame( a = labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2)), b = labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2, DK = 3)), c = labelled( c("a", "a", "b", "c"), labels = c(No = "a", Maybe = "b", Yes = "c") ), d = 1:4, e = factor(c("item1", "item2", "item1", "item2")), f = c("itemA", "itemA", "itemB", "itemB"), stringsAsFactors = FALSE ) if (require(dplyr)) { glimpse(df) glimpse(to_character(df)) glimpse(to_character(df, labelled_only = FALSE)) }
The base function base::as.factor()
is not a generic, but this variant
is. By default, to_factor()
is a wrapper for base::as.factor()
.
Please note that to_factor()
differs slightly from haven::as_factor()
method provided by haven package.
unlabelled(x)
is a shortcut for
to_factor(x, strict = TRUE, unclass = TRUE, labelled_only = TRUE)
.
to_factor(x, ...) ## S3 method for class 'haven_labelled' to_factor( x, levels = c("labels", "values", "prefixed"), ordered = FALSE, nolabel_to_na = FALSE, sort_levels = c("auto", "none", "labels", "values"), decreasing = FALSE, drop_unused_labels = FALSE, user_na_to_na = FALSE, strict = FALSE, unclass = FALSE, explicit_tagged_na = FALSE, ... ) ## S3 method for class 'data.frame' to_factor( x, levels = c("labels", "values", "prefixed"), ordered = FALSE, nolabel_to_na = FALSE, sort_levels = c("auto", "none", "labels", "values"), decreasing = FALSE, labelled_only = TRUE, drop_unused_labels = FALSE, strict = FALSE, unclass = FALSE, explicit_tagged_na = FALSE, ... ) unlabelled(x, ...)
to_factor(x, ...) ## S3 method for class 'haven_labelled' to_factor( x, levels = c("labels", "values", "prefixed"), ordered = FALSE, nolabel_to_na = FALSE, sort_levels = c("auto", "none", "labels", "values"), decreasing = FALSE, drop_unused_labels = FALSE, user_na_to_na = FALSE, strict = FALSE, unclass = FALSE, explicit_tagged_na = FALSE, ... ) ## S3 method for class 'data.frame' to_factor( x, levels = c("labels", "values", "prefixed"), ordered = FALSE, nolabel_to_na = FALSE, sort_levels = c("auto", "none", "labels", "values"), decreasing = FALSE, labelled_only = TRUE, drop_unused_labels = FALSE, strict = FALSE, unclass = FALSE, explicit_tagged_na = FALSE, ... ) unlabelled(x, ...)
x |
Object to coerce to a factor. |
... |
Other arguments passed down to method. |
levels |
What should be used for the factor levels: the labels, the values or labels prefixed with values? |
ordered |
|
nolabel_to_na |
Should values with no label be converted to |
sort_levels |
How the factor levels should be sorted? (see Details) |
decreasing |
Should levels be sorted in decreasing order? |
drop_unused_labels |
Should unused value labels be dropped?
(applied only if |
user_na_to_na |
Convert user defined missing values into |
strict |
Convert to factor only if all values have a defined label? |
unclass |
If not converted to a factor (when |
explicit_tagged_na |
Should tagged NA (cf. |
labelled_only |
for a data.frame, convert only labelled variables to factors? |
If some values doesn't have a label, automatic labels will be created,
except if nolabel_to_na
is TRUE
.
If sort_levels == 'values'
, the levels will be sorted according to the
values of x
.
If sort_levels == 'labels'
, the levels will be sorted according to
labels' names.
If sort_levels == 'none'
, the levels will be in the order the value
labels are defined in x
. If some labels are automatically created, they
will be added at the end.
If sort_levels == 'auto'
, sort_levels == 'none'
will be used, except
if some values doesn't have a defined label. In such case,
sort_levels == 'values'
will be applied.
When applied to a data.frame, only labelled vectors are converted by
default to a factor. Use labelled_only = FALSE
to convert all variables
to factors.
unlabelled()
is a shortcut for quickly removing value labels of a vector
or of a data.frame. If all observed values have a value label, then the
vector will be converted into a factor. Otherwise, the vector will be
unclassed.
If you want to remove value labels in all cases, use remove_val_labels()
.
v <- labelled( c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA), c(yes = 1, no = 3, "don't know" = 9) ) to_factor(v) to_factor(v, nolabel_to_na = TRUE) to_factor(v, "p") to_factor(v, sort_levels = "v") to_factor(v, sort_levels = "n") to_factor(v, sort_levels = "l") x <- labelled(c("H", "M", "H", "L"), c(low = "L", medium = "M", high = "H")) to_factor(x, ordered = TRUE) # Strict conversion v <- labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2)) to_factor(v) to_factor(v, strict = TRUE) # Not converted because 3 does not have a label to_factor(v, strict = TRUE, unclass = TRUE) df <- data.frame( a = labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2)), b = labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2, DK = 3)), c = labelled( c("a", "a", "b", "c"), labels = c(No = "a", Maybe = "b", Yes = "c") ), d = 1:4, e = factor(c("item1", "item2", "item1", "item2")), f = c("itemA", "itemA", "itemB", "itemB"), stringsAsFactors = FALSE ) if (require(dplyr)) { glimpse(df) glimpse(unlabelled(df)) }
v <- labelled( c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA), c(yes = 1, no = 3, "don't know" = 9) ) to_factor(v) to_factor(v, nolabel_to_na = TRUE) to_factor(v, "p") to_factor(v, sort_levels = "v") to_factor(v, sort_levels = "n") to_factor(v, sort_levels = "l") x <- labelled(c("H", "M", "H", "L"), c(low = "L", medium = "M", high = "H")) to_factor(x, ordered = TRUE) # Strict conversion v <- labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2)) to_factor(v) to_factor(v, strict = TRUE) # Not converted because 3 does not have a label to_factor(v, strict = TRUE, unclass = TRUE) df <- data.frame( a = labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2)), b = labelled(c(1, 1, 2, 3), labels = c(No = 1, Yes = 2, DK = 3)), c = labelled( c("a", "a", "b", "c"), labels = c(No = "a", Maybe = "b", Yes = "c") ), d = 1:4, e = factor(c("item1", "item2", "item1", "item2")), f = c("itemA", "itemA", "itemB", "itemB"), stringsAsFactors = FALSE ) if (require(dplyr)) { glimpse(df) glimpse(unlabelled(df)) }
Convert a factor or data imported with foreign or memisc to labelled data.
to_labelled(x, ...) ## S3 method for class 'data.frame' to_labelled(x, ...) ## S3 method for class 'list' to_labelled(x, ...) ## S3 method for class 'data.set' to_labelled(x, ...) ## S3 method for class 'importer' to_labelled(x, ...) foreign_to_labelled(x) memisc_to_labelled(x) ## S3 method for class 'factor' to_labelled(x, labels = NULL, .quiet = FALSE, ...)
to_labelled(x, ...) ## S3 method for class 'data.frame' to_labelled(x, ...) ## S3 method for class 'list' to_labelled(x, ...) ## S3 method for class 'data.set' to_labelled(x, ...) ## S3 method for class 'importer' to_labelled(x, ...) foreign_to_labelled(x) memisc_to_labelled(x) ## S3 method for class 'factor' to_labelled(x, labels = NULL, .quiet = FALSE, ...)
x |
Factor or dataset to convert to labelled data frame |
... |
Not used |
labels |
When converting a factor only:
an optional named vector indicating how factor levels should be coded.
If a factor level is not found in |
.quiet |
do not display warnings for prefixed factors with duplicated codes |
to_labelled()
is a general wrapper calling the appropriate sub-functions.
memisc_to_labelled()
converts a memisc::data.set()
]' object created with
memisc package to a labelled data frame.
foreign_to_labelled()
converts data imported with foreign::read.spss()
or foreign::read.dta()
from foreign package to a labelled data frame,
i.e. using haven::labelled()
.
Factors will not be converted. Therefore, you should use
use.value.labels = FALSE
when importing with foreign::read.spss()
or
convert.factors = FALSE
when importing with foreign::read.dta()
.
To convert correctly defined missing values imported with
foreign::read.spss()
, you should have used to.data.frame = FALSE
and
use.missings = FALSE
. If you used the option to.data.frame = TRUE
,
meta data describing missing values will not be attached to the import.
If you used use.missings = TRUE
, missing values would have been converted
to NA
.
So far, missing values defined in Stata are always imported as NA
by
foreign::read.dta()
and could not be retrieved by foreign_to_labelled()
.
If you convert a labelled vector into a factor with prefix, i.e. by using
to_factor(levels = "prefixed")
, to_labelled.factor()
is
able to reconvert it to a labelled vector with same values and labels.
A tbl data frame or a labelled vector.
haven::labelled()
, foreign::read.spss()
,
foreign::read.dta()
, memisc::data.set()
,
memisc::importer
, to_factor()
.
## Not run: # from foreign library(foreign) sav <- system.file("files", "electric.sav", package = "foreign") df <- to_labelled(read.spss( sav, to.data.frame = FALSE, use.value.labels = FALSE, use.missings = FALSE )) # from memisc library(memisc) nes1948.por <- UnZip("anes/NES1948.ZIP", "NES1948.POR", package = "memisc") nes1948 <- spss.portable.file(nes1948.por) ds <- as.data.set(nes1948) df <- to_labelled(ds) ## End(Not run) # Converting factors to labelled vectors f <- factor( c("yes", "yes", "no", "no", "don't know", "no", "yes", "don't know") ) to_labelled(f) to_labelled(f, c("yes" = 1, "no" = 2, "don't know" = 9)) to_labelled(f, c("yes" = 1, "no" = 2)) to_labelled(f, c("yes" = "Y", "no" = "N", "don't know" = "DK")) s1 <- labelled(c("M", "M", "F"), c(Male = "M", Female = "F")) labels <- val_labels(s1) f1 <- to_factor(s1) f1 to_labelled(f1) identical(s1, to_labelled(f1)) to_labelled(f1, labels) identical(s1, to_labelled(f1, labels)) l <- labelled( c(1, 1, 2, 2, 9, 2, 1, 9), c("yes" = 1, "no" = 2, "don't know" = 9) ) f <- to_factor(l, levels = "p") f to_labelled(f) identical(to_labelled(f), l)
## Not run: # from foreign library(foreign) sav <- system.file("files", "electric.sav", package = "foreign") df <- to_labelled(read.spss( sav, to.data.frame = FALSE, use.value.labels = FALSE, use.missings = FALSE )) # from memisc library(memisc) nes1948.por <- UnZip("anes/NES1948.ZIP", "NES1948.POR", package = "memisc") nes1948 <- spss.portable.file(nes1948.por) ds <- as.data.set(nes1948) df <- to_labelled(ds) ## End(Not run) # Converting factors to labelled vectors f <- factor( c("yes", "yes", "no", "no", "don't know", "no", "yes", "don't know") ) to_labelled(f) to_labelled(f, c("yes" = 1, "no" = 2, "don't know" = 9)) to_labelled(f, c("yes" = 1, "no" = 2)) to_labelled(f, c("yes" = "Y", "no" = "N", "don't know" = "DK")) s1 <- labelled(c("M", "M", "F"), c(Male = "M", Female = "F")) labels <- val_labels(s1) f1 <- to_factor(s1) f1 to_labelled(f1) identical(s1, to_labelled(f1)) to_labelled(f1, labels) identical(s1, to_labelled(f1, labels)) l <- labelled( c(1, 1, 2, 2, 9, 2, 1, 9), c("yes" = 1, "no" = 2, "don't know" = 9) ) f <- to_factor(l, levels = "p") f to_labelled(f) identical(to_labelled(f), l)
These adaptations of base::unique()
, base::duplicated()
,
base::order()
and base::sort()
treats tagged NAs as distinct
values.
unique_tagged_na(x, fromLast = FALSE) duplicated_tagged_na(x, fromLast = FALSE) order_tagged_na( x, na.last = TRUE, decreasing = FALSE, method = c("auto", "shell", "radix"), na_decreasing = decreasing, untagged_na_last = TRUE ) sort_tagged_na( x, decreasing = FALSE, na.last = TRUE, na_decreasing = decreasing, untagged_na_last = TRUE )
unique_tagged_na(x, fromLast = FALSE) duplicated_tagged_na(x, fromLast = FALSE) order_tagged_na( x, na.last = TRUE, decreasing = FALSE, method = c("auto", "shell", "radix"), na_decreasing = decreasing, untagged_na_last = TRUE ) sort_tagged_na( x, decreasing = FALSE, na.last = TRUE, na_decreasing = decreasing, untagged_na_last = TRUE )
x |
a vector |
fromLast |
logical indicating if duplication should be considered from the last |
na.last |
if |
decreasing |
should the sort order be increasing or decreasing? |
method |
the method to be used, see |
na_decreasing |
should the sort order for tagged NAs value be |
untagged_na_last |
should untagged |
x <- c(1, 2, tagged_na("a"), 1, tagged_na("z"), 2, tagged_na("a"), NA) x %>% print_tagged_na() unique(x) %>% print_tagged_na() unique_tagged_na(x) %>% print_tagged_na() duplicated(x) duplicated_tagged_na(x) order(x) order_tagged_na(x) sort(x, na.last = TRUE) %>% print_tagged_na() sort_tagged_na(x) %>% print_tagged_na()
x <- c(1, 2, tagged_na("a"), 1, tagged_na("z"), 2, tagged_na("a"), NA) x %>% print_tagged_na() unique(x) %>% print_tagged_na() unique_tagged_na(x) %>% print_tagged_na() duplicated(x) duplicated_tagged_na(x) order(x) order_tagged_na(x) sort(x, na.last = TRUE) %>% print_tagged_na() sort_tagged_na(x) %>% print_tagged_na()
Labelled data imported with haven version 1.1.2 or before or
created with haven::labelled()
version 1.1.0 or before was using
"labelled" and "labelled_spss" classes.
update_labelled(x) ## S3 method for class 'labelled' update_labelled(x) ## S3 method for class 'haven_labelled_spss' update_labelled(x) ## S3 method for class 'haven_labelled' update_labelled(x) ## S3 method for class 'data.frame' update_labelled(x)
update_labelled(x) ## S3 method for class 'labelled' update_labelled(x) ## S3 method for class 'haven_labelled_spss' update_labelled(x) ## S3 method for class 'haven_labelled' update_labelled(x) ## S3 method for class 'data.frame' update_labelled(x)
x |
An object (vector or data.frame) to convert. |
Since version 2.0.0 of these two packages, "haven_labelled" and "haven_labelled_spss" are used instead.
Since haven 2.3.0, "haven_labelled" class has been evolving using now vctrs package.
update_labelled()
convert labelled vectors
from the old to the new classes and to reconstruct all
labelled vectors with the last version of the package.
haven::labelled()
, haven::labelled_spss()
Update variable/value labels with a function
update_variable_labels_with(.data, .fn, .cols = dplyr::everything(), ...) update_value_labels_with(.data, .fn, .cols = dplyr::everything(), ...)
update_variable_labels_with(.data, .fn, .cols = dplyr::everything(), ...) update_value_labels_with(.data, .fn, .cols = dplyr::everything(), ...)
.data |
A data frame, or data frame extension (e.g. a tibble) |
.fn |
A function used to transform the variable/value labels of the
selected |
.cols |
Columns to update; defaults to all columns. Use tidy selection. |
... |
additional arguments passed onto |
For update_variable_labels_with()
, it is possible to access the name of
the variable inside .fn
by using names()
, i.e. .fn
receive a named
character vector (see example). .fn
can return as.character(NA)
to
remove a variable label.
df <- iris %>% set_variable_labels( Sepal.Length = "Length of sepal", Sepal.Width = "Width of sepal", Petal.Length = "Length of petal", Petal.Width = "Width of petal", Species = "Species" ) df$Species <- to_labelled(df$Species) df %>% look_for() df %>% update_variable_labels_with(toupper) %>% look_for() # accessing variable names with names() df %>% update_variable_labels_with(function(x){tolower(names(x))}) %>% look_for() df %>% update_variable_labels_with(toupper, .cols = dplyr::starts_with("S")) %>% look_for() df %>% update_value_labels_with(toupper) %>% look_for()
df <- iris %>% set_variable_labels( Sepal.Length = "Length of sepal", Sepal.Width = "Width of sepal", Petal.Length = "Length of petal", Petal.Width = "Width of petal", Species = "Species" ) df$Species <- to_labelled(df$Species) df %>% look_for() df %>% update_variable_labels_with(toupper) %>% look_for() # accessing variable names with names() df %>% update_variable_labels_with(function(x){tolower(names(x))}) %>% look_for() df %>% update_variable_labels_with(toupper, .cols = dplyr::starts_with("S")) %>% look_for() df %>% update_value_labels_with(toupper) %>% look_for()
Get / Set value labels
val_labels(x, prefixed = FALSE) val_labels(x, null_action = c("unclass", "labelled")) <- value val_label(x, v, prefixed = FALSE) val_label(x, v, null_action = c("unclass", "labelled")) <- value get_value_labels(x, prefixed = FALSE) set_value_labels( .data, ..., .labels = NA, .strict = TRUE, .null_action = c("unclass", "labelled") ) add_value_labels( .data, ..., .strict = TRUE, .null_action = c("unclass", "labelled") ) remove_value_labels( .data, ..., .strict = TRUE, .null_action = c("unclass", "labelled") )
val_labels(x, prefixed = FALSE) val_labels(x, null_action = c("unclass", "labelled")) <- value val_label(x, v, prefixed = FALSE) val_label(x, v, null_action = c("unclass", "labelled")) <- value get_value_labels(x, prefixed = FALSE) set_value_labels( .data, ..., .labels = NA, .strict = TRUE, .null_action = c("unclass", "labelled") ) add_value_labels( .data, ..., .strict = TRUE, .null_action = c("unclass", "labelled") ) remove_value_labels( .data, ..., .strict = TRUE, .null_action = c("unclass", "labelled") )
x |
A vector or a data.frame |
prefixed |
Should labels be prefixed with values? |
null_action , .null_action
|
for advanced users, if |
value |
A named vector for |
v |
A single value. |
.data |
a data frame or a vector |
... |
name-value pairs of value labels (see examples) |
.labels |
value labels to be applied to the data.frame,
using the same syntax as |
.strict |
should an error be returned if some labels
doesn't correspond to a column of |
val_labels()
will return a named vector.
val_label()
will return a single character string.
set_value_labels()
, add_value_labels()
and remove_value_labels()
will
return an updated copy of .data
.
get_value_labels()
is identical to val_labels()
.
set_value_labels()
, add_value_labels()
and remove_value_labels()
could be used with dplyr syntax.
While set_value_labels()
will replace the list of value labels,
add_value_labels()
and remove_value_labels()
will update that list
(see examples).
set_value_labels()
could also be applied to a vector / a data.frame column.
In such case, you can provide a vector of value labels using .labels
or
several name-value pairs of value labels (see example).
Similarly, add_value_labels()
and remove_value_labels()
could also be
applied on vectors.
v <- labelled( c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA), c(yes = 1, no = 3, "don't know" = 9) ) val_labels(v) val_labels(v, prefixed = TRUE) val_label(v, 2) val_label(v, 2) <- "maybe" v val_label(v, 9) <- NULL v val_labels(v, null_action = "labelled") <- NULL v val_labels(v) <- NULL v if (require(dplyr)) { # setting value labels df <- tibble(s1 = c("M", "M", "F"), s2 = c(1, 1, 2)) %>% set_value_labels( s1 = c(Male = "M", Female = "F"), s2 = c(Yes = 1, No = 2) ) val_labels(df) # updating value labels df <- df %>% add_value_labels(s2 = c(Unknown = 9)) df$s2 # removing a value labels df <- df %>% remove_value_labels(s2 = 9) df$s2 # removing all value labels df <- df %>% set_value_labels(s2 = NULL) df$s2 # example on a vector v <- 1:4 v <- set_value_labels(v, min = 1, max = 4) v v %>% set_value_labels(middle = 3) v %>% set_value_labels(NULL) v %>% set_value_labels(.labels = c(a = 1, b = 2, c = 3, d = 4)) v %>% add_value_labels(between = 2) v %>% remove_value_labels(4) }
v <- labelled( c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA), c(yes = 1, no = 3, "don't know" = 9) ) val_labels(v) val_labels(v, prefixed = TRUE) val_label(v, 2) val_label(v, 2) <- "maybe" v val_label(v, 9) <- NULL v val_labels(v, null_action = "labelled") <- NULL v val_labels(v) <- NULL v if (require(dplyr)) { # setting value labels df <- tibble(s1 = c("M", "M", "F"), s2 = c(1, 1, 2)) %>% set_value_labels( s1 = c(Male = "M", Female = "F"), s2 = c(Yes = 1, No = 2) ) val_labels(df) # updating value labels df <- df %>% add_value_labels(s2 = c(Unknown = 9)) df$s2 # removing a value labels df <- df %>% remove_value_labels(s2 = 9) df$s2 # removing all value labels df <- df %>% set_value_labels(s2 = NULL) df$s2 # example on a vector v <- 1:4 v <- set_value_labels(v, min = 1, max = 4) v v %>% set_value_labels(middle = 3) v %>% set_value_labels(NULL) v %>% set_value_labels(.labels = c(a = 1, b = 2, c = 3, d = 4)) v %>% add_value_labels(between = 2) v %>% remove_value_labels(4) }
For labelled variables, values with a label will be recoded to NA
.
val_labels_to_na(x)
val_labels_to_na(x)
x |
Object to recode. |
v <- labelled(c(1, 2, 9, 1, 9), c(dk = 9)) val_labels_to_na(v)
v <- labelled(c(1, 2, 9, 1, 9), c(dk = 9)) val_labels_to_na(v)
Get / Set a variable label
var_label(x, ...) ## S3 method for class 'data.frame' var_label( x, unlist = FALSE, null_action = c("keep", "fill", "skip", "na", "empty"), recurse = FALSE, ... ) var_label(x) <- value get_variable_labels(x, ...) set_variable_labels(.data, ..., .labels = NA, .strict = TRUE) label_attribute(x) get_label_attribute(x) set_label_attribute(x, value) label_attribute(x) <- value
var_label(x, ...) ## S3 method for class 'data.frame' var_label( x, unlist = FALSE, null_action = c("keep", "fill", "skip", "na", "empty"), recurse = FALSE, ... ) var_label(x) <- value get_variable_labels(x, ...) set_variable_labels(.data, ..., .labels = NA, .strict = TRUE) label_attribute(x) get_label_attribute(x) set_label_attribute(x, value) label_attribute(x) <- value
x |
a vector or a data.frame |
... |
name-value pairs of variable labels (see examples) |
unlist |
for data frames, return a named vector instead of a list |
null_action |
for data frames, by default |
recurse |
if |
value |
a character string or |
.data |
a data frame or a vector |
.labels |
variable labels to be applied to the data.frame,
using the same syntax as |
.strict |
should an error be returned if some labels
doesn't correspond to a column of |
get_variable_labels()
is identical to var_label()
.
For data frames, if you are using var_label()<-
and if value
is a
named list, only elements whose name will match a column of the data frame
will be taken into account. If value
is a character vector, labels should
be in the same order as the columns of the data.frame.
If you are using label_attribute()<-
or set_label_attribute()
on a data
frame, the label attribute will be attached to the data frame itself, not
to a column of the data frame.
If you are using packed columns (see tidyr::pack()
), please read the
dedicated vignette.
set_variable_labels()
will return an updated copy of .data
.
set_variable_labels()
could be used with dplyr syntax.
var_label(iris$Sepal.Length) var_label(iris$Sepal.Length) <- "Length of the sepal" ## Not run: View(iris) ## End(Not run) # To remove a variable label var_label(iris$Sepal.Length) <- NULL # To change several variable labels at once var_label(iris) <- c( "sepal length", "sepal width", "petal length", "petal width", "species" ) var_label(iris) var_label(iris) <- list( Petal.Width = "width of the petal", Petal.Length = "length of the petal", Sepal.Width = NULL, Sepal.Length = NULL ) var_label(iris) var_label(iris, null_action = "fill") var_label(iris, null_action = "skip") var_label(iris, unlist = TRUE) # if (require(dplyr)) { # adding some variable labels df <- tibble(s1 = c("M", "M", "F"), s2 = c(1, 1, 2)) %>% set_variable_labels(s1 = "Sex", s2 = "Yes or No?") var_label(df) # removing a variable label df <- df %>% set_variable_labels(s2 = NULL) var_label(df$s2) # Set labels from dictionary, e.g. as read from external file # One description is missing, one has no match description <- tibble( name = c( "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Something" ), label = c( "Sepal length", "Sepal width", "Petal length", "Petal width", "something" ) ) var_labels <- stats::setNames(as.list(description$label), description$name) iris_labelled <- iris %>% set_variable_labels(.labels = var_labels, .strict = FALSE) var_label(iris_labelled) # defining variable labels derived from variable names if (require(snakecase)) { iris <- iris %>% set_variable_labels(.labels = to_sentence_case(names(iris))) var_label(iris) } # example with a vector v <- 1:5 v <- v %>% set_variable_labels("a variable label") v v %>% set_variable_labels(NULL) }
var_label(iris$Sepal.Length) var_label(iris$Sepal.Length) <- "Length of the sepal" ## Not run: View(iris) ## End(Not run) # To remove a variable label var_label(iris$Sepal.Length) <- NULL # To change several variable labels at once var_label(iris) <- c( "sepal length", "sepal width", "petal length", "petal width", "species" ) var_label(iris) var_label(iris) <- list( Petal.Width = "width of the petal", Petal.Length = "length of the petal", Sepal.Width = NULL, Sepal.Length = NULL ) var_label(iris) var_label(iris, null_action = "fill") var_label(iris, null_action = "skip") var_label(iris, unlist = TRUE) # if (require(dplyr)) { # adding some variable labels df <- tibble(s1 = c("M", "M", "F"), s2 = c(1, 1, 2)) %>% set_variable_labels(s1 = "Sex", s2 = "Yes or No?") var_label(df) # removing a variable label df <- df %>% set_variable_labels(s2 = NULL) var_label(df$s2) # Set labels from dictionary, e.g. as read from external file # One description is missing, one has no match description <- tibble( name = c( "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Something" ), label = c( "Sepal length", "Sepal width", "Petal length", "Petal width", "something" ) ) var_labels <- stats::setNames(as.list(description$label), description$name) iris_labelled <- iris %>% set_variable_labels(.labels = var_labels, .strict = FALSE) var_label(iris_labelled) # defining variable labels derived from variable names if (require(snakecase)) { iris <- iris %>% set_variable_labels(.labels = to_sentence_case(names(iris))) var_label(iris) } # example with a vector v <- 1:5 v <- v %>% set_variable_labels("a variable label") v v %>% set_variable_labels(NULL) }
These datasets are used to test compatibility with foreign (spss_foreign), or haven_2.0 (x_haven_2.0, x_spss_haven_2.0) packages
x_haven_2.0 x_spss_haven_2.0 spss_file dta_file
x_haven_2.0 x_spss_haven_2.0 spss_file dta_file
An object of class haven_labelled
of length 6.
An object of class haven_labelled_spss
(inherits from haven_labelled
) of length 10.
An object of class list
of length 13.
An object of class data.frame
with 47 rows and 6 columns.